3.4.45 \(\int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\) [345]

Optimal. Leaf size=108 \[ \frac {2 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac {10 \cos (c+d x)}{3 a d \sqrt {a+a \sin (c+d x)}}+\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d} \]

[Out]

2*arctanh(1/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))*2^(1/2)/a^(3/2)/d-10/3*cos(d*x+c)/a/d/(a+a*si
n(d*x+c))^(1/2)+2/3*cos(d*x+c)*(a+a*sin(d*x+c))^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {2937, 2830, 2728, 212} \begin {gather*} \frac {2 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}+\frac {2 \cos (c+d x) \sqrt {a \sin (c+d x)+a}}{3 a^2 d}-\frac {10 \cos (c+d x)}{3 a d \sqrt {a \sin (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*Sin[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(a^(3/2)*d) - (10*Cos[c + d*x])
/(3*a*d*Sqrt[a + a*Sin[c + d*x]]) + (2*Cos[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(3*a^2*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 2937

Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_
)]), x_Symbol] :> Simp[d*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 2)/(b^2*f*(m + 3))), x] - Dist[1/(b^2*(m + 3)
), Int[(a + b*Sin[e + f*x])^(m + 1)*(b*d*(m + 2) - a*c*(m + 3) + (b*c*(m + 3) - a*d*(m + 4))*Sin[e + f*x]), x]
, x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GeQ[m, -3/2] && LtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx &=\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d}-\frac {2 \int \frac {\frac {a}{2}-\frac {5}{2} a \sin (c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx}{3 a^2}\\ &=-\frac {10 \cos (c+d x)}{3 a d \sqrt {a+a \sin (c+d x)}}+\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d}-\frac {2 \int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx}{a}\\ &=-\frac {10 \cos (c+d x)}{3 a d \sqrt {a+a \sin (c+d x)}}+\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d}+\frac {4 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a d}\\ &=\frac {2 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac {10 \cos (c+d x)}{3 a d \sqrt {a+a \sin (c+d x)}}+\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.42, size = 149, normalized size = 1.38 \begin {gather*} \frac {\sqrt {a (1+\sin (c+d x))} \left ((12+12 i) (-1)^{3/4} \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \sec \left (\frac {d x}{4}\right ) \left (\cos \left (\frac {1}{4} (2 c+d x)\right )-\sin \left (\frac {1}{4} (2 c+d x)\right )\right )\right )-9 \cos \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {3}{2} (c+d x)\right )+9 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )}{3 a^2 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*Sin[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(Sqrt[a*(1 + Sin[c + d*x])]*((12 + 12*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*Sec[(d*x)/4]*(Cos[(2*c + d*
x)/4] - Sin[(2*c + d*x)/4])] - 9*Cos[(c + d*x)/2] + Cos[(3*(c + d*x))/2] + 9*Sin[(c + d*x)/2] + Sin[(3*(c + d*
x))/2]))/(3*a^2*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))

________________________________________________________________________________________

Maple [A]
time = 5.45, size = 110, normalized size = 1.02

method result size
default \(-\frac {2 \left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (-3 a^{\frac {3}{2}} \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )+\left (a -a \sin \left (d x +c \right )\right )^{\frac {3}{2}}+3 a \sqrt {a -a \sin \left (d x +c \right )}\right )}{3 a^{3} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(110\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/a^3*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(-3*a^(3/2)*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/
2)/a^(1/2))+(a-a*sin(d*x+c))^(3/2)+3*a*(a-a*sin(d*x+c))^(1/2))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2*sin(d*x + c)/(a*sin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 215 vs. \(2 (91) = 182\).
time = 0.38, size = 215, normalized size = 1.99 \begin {gather*} \frac {\frac {3 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a \sin \left (d x + c\right ) + a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt {a}} + 2 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 5\right )} \sin \left (d x + c\right ) - 4 \, \cos \left (d x + c\right ) - 5\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{3 \, {\left (a^{2} d \cos \left (d x + c\right ) + a^{2} d \sin \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/3*(3*sqrt(2)*(a*cos(d*x + c) + a*sin(d*x + c) + a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) +
2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/sqrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x +
c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))/sqrt(a) + 2*(cos(d*x + c)^2 + (cos(d*x + c) + 5)*s
in(d*x + c) - 4*cos(d*x + c) - 5)*sqrt(a*sin(d*x + c) + a))/(a^2*d*cos(d*x + c) + a^2*d*sin(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*sin(d*x+c)/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Integral(sin(c + d*x)*cos(c + d*x)**2/(a*(sin(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 0.55, size = 144, normalized size = 1.33 \begin {gather*} -\frac {\frac {3 \, \sqrt {2} \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {3 \, \sqrt {2} \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {2 \, \sqrt {2} {\left (2 \, a^{\frac {9}{2}} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, a^{\frac {9}{2}} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{6} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/3*(3*sqrt(2)*log(sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(a^(3/2)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 3*sqrt
(2)*log(-sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(a^(3/2)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 2*sqrt(2)*(2*a^(9
/2)*sin(-1/4*pi + 1/2*d*x + 1/2*c)^3 + 3*a^(9/2)*sin(-1/4*pi + 1/2*d*x + 1/2*c))/(a^6*sgn(cos(-1/4*pi + 1/2*d*
x + 1/2*c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^2*sin(c + d*x))/(a + a*sin(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)^2*sin(c + d*x))/(a + a*sin(c + d*x))^(3/2), x)

________________________________________________________________________________________